How do you evaluate the integral 1xx2+1?

1 Answer
Jan 11, 2017

dxx1+x2=ln(1+x211+x2+1)+C

Explanation:

Substitute:

t=1+x2

dt=xdx1+x2

We have:

dxx1+x2=1x2xdx1+x2

And as:

t=1+x2t21=x2

dxx1+x2=dtt21

This can be solved by partial fractions:

1t21=1(t1)(t+1)=At1+Bt+1

A(t+1)+B(t1)=1

(A+B)t+(AB)=1

A+B=0A=B

AB=12A=1A=12B=12

So:

1t21=12(1t11t+1)

and:

dxx1+x2=12dtt112dtt+1=12ln|t1|12ln|t+1|+C

Substituting back x:

dxx1+x2=12ln(1+x21)12ln(1+x2+1)+C

where we have dropped the absolute value, because the arguments of the logarithms are always positive. Applying the properties of logarithms this can also be written as:

dxx1+x2=ln(1+x211+x2+1)+C