How do you integrate int x^3*dx/(x^2-1)^(2/3)∫x3⋅dx(x2−1)23?
1 Answer
Explanation:
We have the integral:
I=intx^3/(x^2-1)^(2/3)dxI=∫x3(x2−1)23dx
Using substitution, let
I=int(x^2(x))/(x^2-1)^(2/3)dx=1/2int(x^2(2x))/(x^2-1)^(2/3)dx=1/2int(u+1)/u^(2/3)duI=∫x2(x)(x2−1)23dx=12∫x2(2x)(x2−1)23dx=12∫u+1u23du
Split up the fraction and then the integrals:
I=1/2int(u^(1/3)+u^(-2/3))du=1/2intu^(1/3)du+1/2intu^(-2/3)duI=12∫(u13+u−23)du=12∫u13du+12∫u−23du
Integrate using the power rule for integrals:
I=1/2(u^(4/3)/(4/3))+1/2(u^(1/3)/(1/3))=3/8u^(4/3)+3/2u^(1/3)=(3u^(4/3)+12u^(1/3))/8I=12(u4343)+12(u1313)=38u43+32u13=3u43+12u138
Continuing simplification:
I=(3u^(1/3)(u+4))/8=(3(x^2-1)^(1/3)((x^2-1)+4))/8=(3(x^2-1)^(1/3)(x^2+3))/8+CI=3u13(u+4)8=3(x2−1)13((x2−1)+4)8=3(x2−1)13(x2+3)8+C