How do you integrate int x^3*dx/(x^2-1)^(2/3)x3dx(x21)23?

1 Answer
Aug 8, 2016

intx^3/(x^2-1)^(2/3)dx=(3(x^2-1)^(1/3)(x^2+3))/8+Cx3(x21)23dx=3(x21)13(x2+3)8+C

Explanation:

We have the integral:

I=intx^3/(x^2-1)^(2/3)dxI=x3(x21)23dx

Using substitution, let u=x^2-1u=x21, so du=2xdxdu=2xdx and x^2=u+1x2=u+1. Thus:

I=int(x^2(x))/(x^2-1)^(2/3)dx=1/2int(x^2(2x))/(x^2-1)^(2/3)dx=1/2int(u+1)/u^(2/3)duI=x2(x)(x21)23dx=12x2(2x)(x21)23dx=12u+1u23du

Split up the fraction and then the integrals:

I=1/2int(u^(1/3)+u^(-2/3))du=1/2intu^(1/3)du+1/2intu^(-2/3)duI=12(u13+u23)du=12u13du+12u23du

Integrate using the power rule for integrals:

I=1/2(u^(4/3)/(4/3))+1/2(u^(1/3)/(1/3))=3/8u^(4/3)+3/2u^(1/3)=(3u^(4/3)+12u^(1/3))/8I=12(u4343)+12(u1313)=38u43+32u13=3u43+12u138

Continuing simplification:

I=(3u^(1/3)(u+4))/8=(3(x^2-1)^(1/3)((x^2-1)+4))/8=(3(x^2-1)^(1/3)(x^2+3))/8+CI=3u13(u+4)8=3(x21)13((x21)+4)8=3(x21)13(x2+3)8+C