How do you find the antiderivative of x * cos^2 (x)xcos2(x)?

2 Answers
Jul 7, 2016

x^2/4+(xsin2x)/4+(cos2x)/8+C.x24+xsin2x4+cos2x8+C.

Explanation:

Let I=intxcos^2xdx.I=xcos2xdx. We use Trgo. Identity : cos^2x=(1+cos2x)/2:cos2x=1+cos2x2

:. I=int{x(1+cos2x)}/2dx =1/2intxdx+1/2intxcos2xdx=x^2/4+1/2I_1,

where, I_1=intxcos2xdx, & to evaluate this, we are going to use the Rule of Integration by Parts , given by,

intuvdx=uintvdx-int[(du)/dx*intvdx]dx.

We, in this Rule, will take u=x, and, v=cos2x. Hence,

I_1=x*intcos2xdx-int[d/dx(x)*intcos2xdx]dx,

=x*(sin2x)/2-int1*(sin2x)/2dx,=x/2*sin2x-1/2*(-cos2x)/2.

:. I_1=x/2*sin2x+(cos2x)/4.

Therefore, I=x^2/4+1/2{(xsin2x)/2+(cos2x)/4}
=x^2/4+(xsin2x)/4+(cos2x)/8+C.

Jul 7, 2016

int x*cos^2 x d x=(2x(sin2x+x)+cos2x)/8+C

Explanation:

int x*cos^2 x d x=?

cos 2x=cos^2x-sin^2x" ; so "sin^2 x=1-cos^2x

cos2x=cos^2 x-(1-cos^2 x)

cos2x=cos^2 x-1+cos^2 x=2cos^2 x-1

cos2x+1=2cos^2 x

cos^2 x=1/2(cos2x+1)

int x* cos^2 x d x=int x*1/2(cos2x+1) d x

int x*cos^2 x d x=1/2 int x*(cos2x+1) d x

int x*cos^2 x d x=1/2[color(red)(int x*cos2x* d x)+color(green)(int x* d x)]

color(red)(int x*cos2x*d x)=?" ; "

x=u" ; "d x=d u

cos 2x d x=d v" ; " v=1/2 sin 2x

color(red)(int x*cos2 x d x=u*v-int v*d u)

color(red)(int x*cos2 x d x=1/2*x*sin 2x-int 1/2*sin2x d x

color(red)(int x*cos2 x d x=1/2x*sin 2x+1/2*1/2*cos2x
color(red)(int x*cos2 x d x=1/2 x*sin2x+1/4cos2x

color(green)(int x*d x=?)" ; "

color(green)(int x*d x=1/2 x^2)

int x*cos^2 x d x=1/2[1/2x*sin2x+1/4cos2x+1/2x^2]

int x*cos^2 x d x=1/4x*sin2x+1/8*cos2x+1/4*x^2

int x*cos^2 x d x=(2xsin2x+2x^2+cos2x)/8+C

int x*cos^2 x d x=(2x(sin2x+x)+cos2x)/8+C