How do you find the antiderivative of sin^4(x)sin4(x)?

1 Answer
Apr 29, 2015

You could use power reduction formulas (double angle)

Because cos 2 theta = 1-2sin^2 theta = 2cos theta -1cos2θ=12sin2θ=2cosθ1, we get

sin^2theta = 1/2 (1-cos2 theta)sin2θ=12(1cos2θ)
and
cos^2theta = 1/2 (1+cos2 theta)cos2θ=12(1+cos2θ)

int sin^4x dx = int (sin^2x)^2 dxsin4xdx=(sin2x)2dx

color(white)"sssssssssss"sssssssssss = int [1/2(1-cos2x)]^2 dx=[12(1cos2x)]2dx

color(white)"sssssssssss"sssssssssss = 1/4 int (1-2cos2x+ cos^2 2x) dx=14(12cos2x+cos22x)dx

color(white)"sssssssssss"sssssssssss = 1/4 int (1-2cos2x+ 1/2(1+cos4x)) dx=14(12cos2x+12(1+cos4x))dx

color(white)"sssssssssss"sssssssssss = 1/4 int (3/2-2cos2x+ 1/2 cos4x) dx=14(322cos2x+12cos4x)dx

color(white)"sssssssssss"sssssssssss = 1/4 (3/2 x - sin2x+ 1/8 sin4x) +C=14(32xsin2x+18sin4x)+C

color(white)"sssssssssss"sssssssssss = 3/8 x- 1/4 sin2x+ 1/32 sin4x +C=38x14sin2x+132sin4x+C