How do you integrate sin(2t+1)/(cos(2t+1)^2) dt? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Tom Apr 11, 2015 f(x)=int(sin(2t+1))/cos^2(2t+1)dt Let's u=2t+1 du = 2 Now we have : f(x)=1/2intsin(u)*cos^-2(u)du f(x)=-1/2int-sin(u)*cos^-2(u)du F(x)=1/2[cos^-1(u)]+C F(x) = 1/(2cos(2t+1))+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 6677 views around the world You can reuse this answer Creative Commons License