What's the integral of int tanx / (cosx)^2 dxtanx(cosx)2dx?

2 Answers
Nov 2, 2015

int tanx / (cosx)^2 dx = 1/2 sec^2x +Ctanx(cosx)2dx=12sec2x+C (Or, equivalently 1/2tan^2x +C12tan2x+C, depending on method used.)

Explanation:

Method 1

tanx/cos^2x = sinx/cosx 1/cos^2x = sinx (cosx)^-3tanxcos2x=sinxcosx1cos2x=sinx(cosx)3

Integrate by substitution with u=cosxu=cosx.

Method 2

tanx/cos^2x = tanx seec^2x = (secx)(secxtanx)tanxcos2x=tanxseec2x=(secx)(secxtanx)

Integrate by substitution with u=secxu=secx.

Method 3

tanx/cos^2x = tanx seec^2xtanxcos2x=tanxseec2x

Integrate by substitution with u=tanxu=tanx.

This method gets the antiderivative in the form 1/2tan^2x + C12tan2x+C

Nov 2, 2015

I found: 1/(2cos^2(x))+c12cos2(x)+c

Explanation:

I would write it as:
int(tan(x))/cos^2(x)dx=intsin(x)/cos(x)1/cos^2(x)dx=intsin(x)/cos^3(x)dx=tan(x)cos2(x)dx=sin(x)cos(x)1cos2(x)dx=sin(x)cos3(x)dx=
I can use the fact that:
d[cos(x)]=-sin(x)dxd[cos(x)]=sin(x)dx to write:
int-(d[cos(x)])/cos^3(x)=int-cos^-3(x)(d[cos(x)])=d[cos(x)]cos3(x)=cos3(x)(d[cos(x)])= where cos(x)cos(x) is our variable of integration; giving:
=-cos^-2/-2+c=1/(2cos^2(x))+c=cos22+c=12cos2(x)+c