How do you find the indefinite integral of int csc^2t/cott dtcsc2tcottdt?

2 Answers
Dec 21, 2016

int csc^2t/cott \ dt = ln |Atant|

Explanation:

Using the trig identity 1 + cot^2theta -= csc^2theta we have:

int csc^2t/cott \ dt = int (1+cot^2t)/cott \ dt
" " = int 1/cott+cot^2t/cott \ dt
" " = int tant+cott \ dt

Then using the standard results:

int tanx \ dt = ln |secx| " "(+c)
int cosx \ dt = ln |sinx| " "(+c)

We get the solution where (A=constant):

int csc^2t/cott \ dt = ln |secx| + ln |sinx| + lnA
" "= ln |Asintsect|
" "= ln |Asint/cost|
" "= ln |Atant|

Dec 22, 2016

-ln|cott| + C

Explanation:

Start by rewriting this integral in simpler trig functions (with respect to sine and cosine). We use the identities csctheta = 1/sintheta and cottheta = costheta/sintheta to accomplish this.

=> int(1/sin^2t)/(cost/sint) dt

=> int(1/sin^2t * sint/cost) dt

=> int(1/(sintcost))dt

=> int(1/(1/2sin2t))dt

=> int(2csc2t)dt

=> 2int(csc2t)dt

We now let u = 2t.Then du = 2dt and dt = 1/2du.

=> 2int(cscu)1/2du

=> int(cscu)du

This is a trick integral to do. Expand the fraction by cscu + cotu to get:

=>int((csc^2u + cotucscu)/(cscu+ cotu))dt

Now make v = cscu + cotu. This means that (dv)/(du) = -(csc^2u + cotucscu). So:

=>int((csc^2u + cotucscu)/(v)) * (dv)/(-(csc^2u + cotucscu))

=>int(-1/v)dv

=> -int(1/v)

=> -ln|v| + C

=> -ln|cscu + cotu| + C

=> -ln|csc(2t) + cot(2t)| + C

Which can be simplified to -ln|cott| + C

Hopefully this helps!