How do you find the indefinite integral of int csc^2t/cott dt∫csc2tcottdt?
2 Answers
Explanation:
Using the trig identity
int csc^2t/cott \ dt = int (1+cot^2t)/cott \ dt
" " = int 1/cott+cot^2t/cott \ dt
" " = int tant+cott \ dt
Then using the standard results:
int tanx \ dt = ln |secx| " "(+c)
int cosx \ dt = ln |sinx| " "(+c)
We get the solution where (
int csc^2t/cott \ dt = ln |secx| + ln |sinx| + lnA
" "= ln |Asintsect|
" "= ln |Asint/cost|
" "= ln |Atant|
Explanation:
Start by rewriting this integral in simpler trig functions (with respect to sine and cosine). We use the identities
=> int(1/sin^2t)/(cost/sint) dt
=> int(1/sin^2t * sint/cost) dt
=> int(1/(sintcost))dt
=> int(1/(1/2sin2t))dt
=> int(2csc2t)dt
=> 2int(csc2t)dt
We now let
=> 2int(cscu)1/2du
=> int(cscu)du
This is a trick integral to do. Expand the fraction by
=>int((csc^2u + cotucscu)/(cscu+ cotu))dt
Now make
=>int((csc^2u + cotucscu)/(v)) * (dv)/(-(csc^2u + cotucscu))
=>int(-1/v)dv
=> -int(1/v)
=> -ln|v| + C
=> -ln|cscu + cotu| + C
=> -ln|csc(2t) + cot(2t)| + C
Which can be simplified to
Hopefully this helps!