What is the antiderivative of (x-2)sinx(x−2)sinx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Eddie Sep 17, 2016 = - (x-2) cos x + sin x + C=−(x−2)cosx+sinx+C Explanation: do an IBP int (x-2) sin x dx∫(x−2)sinxdx = int (x-2) d/dx (- cos x) dx + C=∫(x−2)ddx(−cosx)dx+C = (x-2) (- cos x) - int d/dx (x-2) (- cos x) dx + C=(x−2)(−cosx)−∫ddx(x−2)(−cosx)dx+C = - (x-2) cos x + int cos x dx + C=−(x−2)cosx+∫cosxdx+C = - (x-2) cos x + sin x + C=−(x−2)cosx+sinx+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx∫cos5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt∫sin2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx∫(1+cos(x))2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx∫tan2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1306 views around the world You can reuse this answer Creative Commons License