What is the antiderivative of #(x-2)sinx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Eddie Sep 17, 2016 #= - (x-2) cos x + sin x + C# Explanation: do an IBP #int (x-2) sin x dx# #= int (x-2) d/dx (- cos x) dx + C# #= (x-2) (- cos x) - int d/dx (x-2) (- cos x) dx + C# #= - (x-2) cos x + int cos x dx + C# #= - (x-2) cos x + sin x + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1154 views around the world You can reuse this answer Creative Commons License