What is the integral of int tan^3(x) dx?
1 Answer
Jan 14, 2017
Explanation:
Split up
inttan^3(x)dx=inttan^2(x)tan(x)dx=int(sec^2(x)-1)tan(x)dx
Distribute:
=intsec^2(x)tan(x)dx-inttan(x)dx
For the first integral, apply the substitution
=intucolor(white).du-inttan(x)dx
=u^2/2-inttan(x)dx
=tan^2(x)/2-inttan(x)dx
Now rewrite
=tan^2(x)/2-intsin(x)/cos(x)dx
=tan^2(x)/2+int(-sin(x))/cos(x)dx
=tan^2(x)/2+int(dv)/v
This is a common integral:
=tan^2(x)/2+ln(absv)+C
=tan^2(x)/2+ln(abscos(x))+C