What is the integral of #int tan^3(x) dx#?
1 Answer
Jan 14, 2017
Explanation:
Split up
#inttan^3(x)dx=inttan^2(x)tan(x)dx=int(sec^2(x)-1)tan(x)dx#
Distribute:
#=intsec^2(x)tan(x)dx-inttan(x)dx#
For the first integral, apply the substitution
#=intucolor(white).du-inttan(x)dx#
#=u^2/2-inttan(x)dx#
#=tan^2(x)/2-inttan(x)dx#
Now rewrite
#=tan^2(x)/2-intsin(x)/cos(x)dx#
#=tan^2(x)/2+int(-sin(x))/cos(x)dx#
#=tan^2(x)/2+int(dv)/v#
This is a common integral:
#=tan^2(x)/2+ln(absv)+C#
#=tan^2(x)/2+ln(abscos(x))+C#