What is the integral of int tan^3(x) dx?

1 Answer
Jan 14, 2017

tan^2(x)/2+ln(abscos(x))+C

Explanation:

Split up tan^3(x) into tan^2(x)tan(x) then rewrite tan^2(x) using the identity tan^2(theta)+1=sec^2(theta)=>tan^2(theta)=sec^2(theta)-1.

inttan^3(x)dx=inttan^2(x)tan(x)dx=int(sec^2(x)-1)tan(x)dx

Distribute:

=intsec^2(x)tan(x)dx-inttan(x)dx

For the first integral, apply the substitution u=tan(x)=>du=sec^2(x)dx, both of which are already in the integral.

=intucolor(white).du-inttan(x)dx

=u^2/2-inttan(x)dx

=tan^2(x)/2-inttan(x)dx

Now rewrite tan(x) as sin(x)/cos(x) and apply the substitution v=cos(x)=>dv=-sin(x)dx.

=tan^2(x)/2-intsin(x)/cos(x)dx

=tan^2(x)/2+int(-sin(x))/cos(x)dx

=tan^2(x)/2+int(dv)/v

This is a common integral:

=tan^2(x)/2+ln(absv)+C

=tan^2(x)/2+ln(abscos(x))+C