What is the antiderivative of sin^2(x)? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Euan S. Jul 4, 2016 = 1/2[x - 1/2sin2x] + C Explanation: We're going to use the trig identity cos2theta = 1 -2sin^2theta implies sin^2x = 1/2(1 - cos2x) So int sin^2xdx = 1/2int(1-cos2x)dx = 1/2[x - 1/2sin2x] + C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 101294 views around the world You can reuse this answer Creative Commons License