How do you evaluate ∫sec^3(x) tan(x) dx?

3 Answers
Apr 3, 2018

The answer is =1/3sec^3x+C

Explanation:

Perform this integral by substitution

Let u=sec^3x

du=3sec^2xsecxtanxdx

Therefore, the integral is

I=intsec^3xtanxdx=1/3intdu

=1/3u

=1/3sec^3x+C

Apr 3, 2018

int sec^3(x) tan(x) dx = 1/3 sec^3(x) + C

Explanation:

The way I saw this was to notice that:

sec^3(x) tan(x) = 1/cos^3(x) sin(x)/cos(x) = sin(x) cos^(-4)(x)

and:

d/(dx) cos^(-3)(x) = -3cos^(-4)(x)(-sin(x)) = 3 sin(x) cos^(-4)(x)

So:

int sec^3(x) tan(x) dx = 1/3 cos^(-3)(x) + C = 1/3 sec^3(x) + C

Apr 3, 2018

1/3sec^3x+C.

Explanation:

intsec^3xtanxdx=intsec^2x(secxtanx)dx,

Since, d/dx(secx)=secxtanx, if we subst secx=y, we have,

secxtanxdx=dy.

:. intsec^3xtanxdx=inty^2dy=1/3y^3.

rArr intsec^3xtanxdx=1/3sec^3x+C.