First note that sin^6(x)+cos^6(x) is a sum of two cubes (sin^2(x))^3+(cos^2(x))^3 so it can be factored using a^3+b^3=(a+b)(a^2-ab+b^2) and the Pythagorean identity to get
sin^6(x)+cos^6(x)=(sin^2(x))^3+(cos^2(x))^3
=(sin^2(x)+cos^2(x))(sin^4(x)-sin^2(x)cos^2(x)+cos^4(x))
=sin^4(x)-sin^2(x)cos^2(x)+cos^4(x).
Therefore,
(sin^6 x + cos^6 x)/ (sin^2(x) cos ^2(x))= (sin^4(x)-sin^2(x)cos^2(x)+cos^4(x))/ (sin^2(x) cos ^2(x))
=tan^2(x)-1+cot^2(x)
But tan^2(x)=sec^2(x)-1 and cot^2(x)=csc^2(x)-1. Hence,
(sin^6 x + cos^6 x)/ (sin^2(x) cos ^2(x))=sec^2(x)+csc^2(x)-3 and thus
int (sin^6(x) + cos^6(x))/ (sin^2(x) cos ^2(x))\ dx=int sec^2(x)+csc^2(x)-3\ dx
=tan(x)-cot(x)-3x+C