How do you find the integral of int 48((sin(sqrt(x))^3)/(sqrt(x))48(sin(x)3x?

1 Answer

4\cos(3\sqrtx)-36\cos (\sqrtx)+C4cos(3x)36cos(x)+C

Explanation:

Assuming there is a typo in the question, it can possibly taken as

\int 48(\frac{(\sin(\sqrtx))^3}{\sqrtx})\ dx

=48\int\frac{\sin^3(\sqrtx)}{\sqrtx}\ dx

Let sqrtx=t\implies 1/{2\sqrtx}\ dx=dt\ \ or\ \ dx=2t dt

=48\int\frac{\sin^3t}{t}(2t\ dt)

=48\int \sin^3t\ dt

=48\int\frac{3\sint-\sin(3t)}{4}\ dt

=12(3\int \sin t\ dt-\int \sin(3t)\ dt)

=12(3(-\cos t)- \frac{-\cos(3t)}{3}) +C

=4\cos(3t)-36\cos t+C

=4\cos(3\sqrtx)-36\cos (\sqrtx)+C