How do you find the integral of int (cosx)^4 dx?

1 Answer
Mar 16, 2018

The answer is =1/32sin(4x)+1/4sin(2x)+3/8x+C

Explanation:

First, linearize cos^4x by applying Euler's Identity

cosx=(e^(ix)+e^(-ix))/2

Therefore,

cos^4x=((e^(ix)+e^(-ix))/2)^4

=1/16(e^(4ix)+e^(-4ix)+4e^(2ix)+4e^(-2ix)+6)

=1/8(cos(4x)+4cos(2x)+3)

Therefore,

intcos^4xdx=1/8intcos(4x)dx+1/2intcos(2x)+3/8int1dx

=1/32sin(4x)+1/4sin(2x)+3/8x+C