What is x3x2+4dx?

2 Answers
Dec 23, 2015

Use the substitution u=x2+4 to find

x3x2+4dx=15(x2+4)5243(x2+4)32+C

Explanation:

For this problem we will use:

  • xndx=xn+1n+1+C

  • (f(x)+g(x))dx=f(x)dx+g(x)dx

  • Integration by Substitution


We will proceed using the substitution u=x2+4.
Then du=2xdx and we have

x3x2+4dx=12((x2+4)4)x2+42xdx

=12(u4)udu

=12(u324u12)du

=12u32du2u12du

=15u5243u32+C

=15(x2+4)5243(x2+4)32+C

Dec 23, 2015

Use u substitution and then solve.

Explanation:

x3x2+4dx

Let u=x2+4

Differentiate with respect to x

du=2xdx
du2=xdx

Also we have u=x2+4 therefore x2=u4

x3x2+4dx

Rewriting our integral as
x2x2+4xdx

Substituting for x2,x2+4 and xdx

(u4)udu2
12(u4)udu
12(u324u12)du Note u=u12
12{u32du4u12du}

We apply power rule xndx=xn+1n+1+C where x not equal to 1

12{u32+132+14u12+112+1}+C
12{u52524u3232}+C
12{(25)u524(23)u32}+C
15u5243u32+C
15(x2+4)5243(x2+4)32+C Answer .

It can be further simplified if needed.