How do you integrate int x/ cos^2(x)dx?
1 Answer
Sep 10, 2016
Explanation:
We have:
I=x/cos^2(x)dx=intxsec^2(x)dx
We will use integration by parts, which takes the form
{(u=x,(du)/dx=1,du=dx),(dv=sec^2(x)dx,intdv=intsec^2(x)dx,v=tan(x)):}
Thus:
I=xtan(x)-inttan(x)dx
I=xtan(x)+int(-sin(x))/cos(x)dx
Letting
I=xtan(x)+int(dy)/y
I=xtan(x)+ln(absy)
I=xtan(x)+ln(abscos(x))+C