How do you integrate int x/ cos^2(x)dx?

1 Answer
Sep 10, 2016

xtan(x)+ln(abscos(x))+C

Explanation:

We have:

I=x/cos^2(x)dx=intxsec^2(x)dx

We will use integration by parts, which takes the form intudv=uv-intvdu. For the given integral intxsec^2(x)dx, let:

{(u=x,(du)/dx=1,du=dx),(dv=sec^2(x)dx,intdv=intsec^2(x)dx,v=tan(x)):}

Thus:

I=xtan(x)-inttan(x)dx

I=xtan(x)+int(-sin(x))/cos(x)dx

Letting y=cos(x) such that dy=-sin(x)dx:

I=xtan(x)+int(dy)/y

I=xtan(x)+ln(absy)

I=xtan(x)+ln(abscos(x))+C