How do you find the antiderivative of sin^2 (2x) cos^3 (2x) dx?

1 Answer
Feb 19, 2017

We start with a u-subsitution, letting u = 2x. Then du = 2dx and dx = (du)/2.

int sin^2ucos^3u (du)/2

1/2intsin^2ucos^3udu

1/2intsin^2ucos^2ucosudu

1/2intsin^2u(1- sin^2u)cosudu

1/2int(sin^2u - sin^4u)cosudu

Now let n = sinu. Then dn = cosudu and du = (dn)/cosu.

1/2int(n^2 - n^4)cosu * (dn)/cosu

1/2int n^2 -n^4 dn

1/2(1/3n^3 - 1/4n^4) + C

1/6n^3 - 1/8n^4 + C

1/6sin^3u - 1/8sin^4u + C

1/6sin^3(2x) - 1/8sin^4(2x) + C

Hopefully this helps!