How do you find the antiderivative of sin^2 (2x) cos^3 (2x) dx?
1 Answer
Feb 19, 2017
We start with a u-subsitution, letting
int sin^2ucos^3u (du)/2
1/2intsin^2ucos^3udu
1/2intsin^2ucos^2ucosudu
1/2intsin^2u(1- sin^2u)cosudu
1/2int(sin^2u - sin^4u)cosudu
Now let
1/2int(n^2 - n^4)cosu * (dn)/cosu
1/2int n^2 -n^4 dn
1/2(1/3n^3 - 1/4n^4) + C
1/6n^3 - 1/8n^4 + C
1/6sin^3u - 1/8sin^4u + C
1/6sin^3(2x) - 1/8sin^4(2x) + C
Hopefully this helps!