What is the integral of int tan^5(x)*sec^4(x)dx∫tan5(x)⋅sec4(x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Eddie Jul 5, 2016 = 1/8tan^8(x) + 1/6tan^6(x) + C=18tan8(x)+16tan6(x)+C Explanation: int dx qquad tan^5(x)*sec^4(x) = int dx qquad tan^5(x)*color{red}{sec^2(x)}*sec^2(x) using well known identity.... = int dx qquad tan^5(x)*color{red}{(tan^2(x) + 1)}*sec^2(x) = int dx qquad (tan^7(x) + tan^5(x))*sec^2(x) = int dx qquad tan^7(x)*sec^2(x) + tan^5(x)*sec^2(x) = 1/8tan^8(x) + 1/6tan^6(x) + C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 18310 views around the world You can reuse this answer Creative Commons License