(4+5tan(x))sec4(x)tan5(x)dx?

1 Answer
Mar 3, 2018

(4+5tanx)sec4xtan5xdx=3+5tanx+6tan2x+15tan3x3tan4x+C

Explanation:

Using the trigonometric identity:

1+tan2α=1+sin2αcos2α=cos2α+sin2αcos2α=sec2α

At the numerator let:

sec4x=sec2xsec2x=(1+tan2x)sec2x

Then substitute t=tanx, dt=sec2xdx:

(4+5tanx)sec4xtan5xdx=(4+5t)(1+t2)t5dt

(4+5tanx)sec4xtan5xdx=4+5t+4t2+5t3t5dt

and using the linearity of the integral:

(4+5tanx)sec4xtan5xdx=4dtt5+5dtt4+4dtt3+5dtt2

(4+5tanx)sec4xtan5xdx=1t453t32t25t+C

(4+5tanx)sec4xtan5xdx=3+5t+6t2+15t33t4+C

and undoing the substitution:

(4+5tanx)sec4xtan5xdx=3+5tanx+6tan2x+15tan3x3tan4x+C