How do you find the integral of 1/sqrt(1-4x^2)dx?

2 Answers
Feb 28, 2015

We can evaluate this integral by using a trigonometric substitution.

Let sintheta =2x Then

x=1/2sintheta

differentiate

dx=1/2costheta d theta

Make substitution

1/2intcostheta/(sqrt(1-4(1/2sintheta)^2))d theta

1/2intcostheta/(sqrt(1-4(1/4sin^2theta)))d theta

1/2intcostheta/(sqrt(1-sin^2theta))d theta

1/2intcostheta/(sqrt(cos^2theta))d theta

1/2intcostheta/(costheta)d theta

1/2intd theta

Integrating we have 1/2theta

Defining theta in terms of x

theta=arcsin(2x) Therefore

1/2arcsin(2x)+C

Feb 28, 2015

The answer is: 1/2arcsin2x+c.

Remembering that:

int(f'(x))/sqrt(1-[f(x)]^2)dx=arcsinf(x)+c,

so:

int1/sqrt(1-4x^2)dx=int1/sqrt(1-(2x)^2)dx=1/2int2/(sqrt(1-(2x)^2))dx=

=1/2arcsin2x+c.