What's the integral of (tanx)8?

1 Answer
Jun 7, 2016

tan7x7tan5x5+tan3x3tanx+x+K

Explanation:

First, to prevent loss in presentation marks, we always tag on the dx on the end of the integral. That is, our goal is to find (tan8x)dx.

Notice that tan8x=tan6xtan2x=tan6x(sec2x1)=tan6xsec2xtan6x

Then (tan8x)dx=(tan6x)(sec2x)dx(tan6x)dx

To solve the first integral, we let u=tanx which implies that du=sec2xdx, thus the integral is simplified to

u6du=u77+K=tan7x7+K.

Using similar methods to find (tan6x)dx, (tan4x)dx and (tan2x)dx, we derive that

(tan8x)dx=tan7x7tan5x5+tan3x3tanx+x+K


For a slightly shorter method, we use the method of reduction formulae. Consider the general integral In=(tannx)dx. Using the same trigonometric identity, we find that

(tannx)dx=(tann2x)(sec2x)dx(tann2x)dx

which stands to reason that In=tann1xn1In2.

All we now need to do is find I8, which in turn requires us to find I6, I4, I2 and I0 respectively.

I0 is fairly easy, since (tan0x)dx=1dx=x+K.

Using the formulae given (In=tann1xn1In2), we can find everything else.

I2=tanxI0=tanxxK

I4=tan3x3I2=tan3x3tanx+x+K

I6=tan5x5I4=tan5x5tan3x3+tanxxK

I8=tan7x7I6=tan7x7tan5x5+tan3x3tanx+x+K

Therefore, (tan8x)dx=tan7x7tan5x5+tan3x3tanx+x+K