What is the integral of int sqrt(Tan x) / (sin x cos x)dx?

1 Answer
May 28, 2018

The answer is =2sqrt(tanx)+C

Explanation:

We need

tanx=sinx/cosx

sinx=cosxtanx=tanx/secx

Therefore, the integral is

I=int(sqrt(tanx)dx)/(sinxcosx)=int(sqrt(tanx)dx)/(tanx/secx*1/secx)

=int(sec^2xdx)/sqrt(tanx)

Let u=tanx, =>, du=sec^2xdx

The integral is

I=int(du)sqrt(u)

=sqrt(u)/(1/2)

=2sqrt(u)

=2sqrt(tanx)+C