How do you integrate cos2x? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer GiĆ³ Feb 17, 2015 You can set 2x=t so that x=t/2 and dx=1/2dt Your integral becomes: intcos(t)/2dt=sin(t)/2+c and going back to x =sin(2x)/2+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 3020 views around the world You can reuse this answer Creative Commons License