How do you evaluate the integral int sqrt(x^2-1)dx∫√x2−1dx?
2 Answers
Explanation:
I=intsqrt(x^2-1)color(white).dxI=∫√x2−1.dx
Use the trigonometric substitution
I=intsqrt(sec^2theta-1)(secthetatanthetacolor(white).d theta)I=∫√sec2θ−1(secθtanθ.dθ)
Note that from the identity
I=inttan(secthetatantheta)d thetaI=∫tan(secθtanθ)dθ
I=intsecthetatan^2thetacolor(white).d thetaI=∫secθtan2θ.dθ
Let
I=intsectheta(sec^2theta-1)color(white).d thetaI=∫secθ(sec2θ−1).dθ
I=intsec^3thetacolor(white).d theta-intsecthetacolor(white).d thetaI=∫sec3θ.dθ−∫secθ.dθ
The integral of
I=intsec^3thetacolor(white).d theta-lnabs(sectheta+tantheta)I=∫sec3θ.dθ−ln|secθ+tanθ|
Let
J=intsectheta(sec^2theta)d thetaJ=∫secθ(sec2θ)dθ
This can be tackled using integration by parts. Let:
{(u=sectheta" "=>" "du=secthetatanthetacolor(white).d theta),(dv=sec^2thetacolor(white).d theta" "=>" "v=tantheta):}
Then:
J=secthetatantheta-intsecthetatan^2thetacolor(white).d theta
Again let
J=secthetatantheta-intsectheta(sec^2theta-1)d theta
J=secthetatantheta-intsec^3thetacolor(white).d theta+intsecthetacolor(white).d theta
Note that the original integral
J=secthetatantheta-J+lnabs(sectheta+tantheta)
2J=secthetatantheta+lnabs(sectheta+tantheta)
J=1/2secthetatantheta+1/2lnabs(sectheta+tantheta)
Returning to the original integral:
I=J-lnabs(sectheta+tantheta)
I=(1/2secthetatantheta+1/2lnabs(sectheta+tantheta))-lnabs(sectheta+tantheta)
I=1/2secthetatantheta-1/2lnabs(sectheta+tantheta)
Recall our original substitution
I=1/2xsqrt(x^2-1)-1/2lnabs(x+sqrt(x^2-1))+C
Explanation:
Let
We will use the following Rule of Integration by Parts (IBP) :
Taking
Spread the Joy Maths.!