How do you evaluate the integral int sqrt(x^2-1)dxx21dx?

2 Answers
Jan 22, 2017

intsqrt(x^2-1)color(white).dx=1/2xsqrt(x^2-1)-1/2lnabs(x+sqrt(x^2-1))+Cx21.dx=12xx2112lnx+x21+C

Explanation:

I=intsqrt(x^2-1)color(white).dxI=x21.dx

Use the trigonometric substitution x=secthetax=secθ. Differentiating this shows that dx=secthetatanthetacolor(white).d thetadx=secθtanθ.dθ. Substituting both of these gives:

I=intsqrt(sec^2theta-1)(secthetatanthetacolor(white).d theta)I=sec2θ1(secθtanθ.dθ)

Note that from the identity tan^2theta+1=sec^2thetatan2θ+1=sec2θ we see that tantheta=sqrt(sec^2theta-1)tanθ=sec2θ1:

I=inttan(secthetatantheta)d thetaI=tan(secθtanθ)dθ

I=intsecthetatan^2thetacolor(white).d thetaI=secθtan2θ.dθ

Let tan^2theta=sec^2theta-1tan2θ=sec2θ1:

I=intsectheta(sec^2theta-1)color(white).d thetaI=secθ(sec2θ1).dθ

I=intsec^3thetacolor(white).d theta-intsecthetacolor(white).d thetaI=sec3θ.dθsecθ.dθ

The integral of secthetasecθ is common:

I=intsec^3thetacolor(white).d theta-lnabs(sectheta+tantheta)I=sec3θ.dθln|secθ+tanθ|

Let J=intsec^3thetacolor(white).d thetaJ=sec3θ.dθ.

J=intsectheta(sec^2theta)d thetaJ=secθ(sec2θ)dθ

This can be tackled using integration by parts. Let:

{(u=sectheta" "=>" "du=secthetatanthetacolor(white).d theta),(dv=sec^2thetacolor(white).d theta" "=>" "v=tantheta):}

Then:

J=secthetatantheta-intsecthetatan^2thetacolor(white).d theta

Again let tan^2theta=sec^2theta-1:

J=secthetatantheta-intsectheta(sec^2theta-1)d theta

J=secthetatantheta-intsec^3thetacolor(white).d theta+intsecthetacolor(white).d theta

Note that the original integral J is included again, and we know the integral of secant:

J=secthetatantheta-J+lnabs(sectheta+tantheta)

2J=secthetatantheta+lnabs(sectheta+tantheta)

J=1/2secthetatantheta+1/2lnabs(sectheta+tantheta)

Returning to the original integral:

I=J-lnabs(sectheta+tantheta)

I=(1/2secthetatantheta+1/2lnabs(sectheta+tantheta))-lnabs(sectheta+tantheta)

I=1/2secthetatantheta-1/2lnabs(sectheta+tantheta)

Recall our original substitution x=sectheta. This implies that tantheta=sqrt(sec^2theta-1)=sqrt(x^2-1).

I=1/2xsqrt(x^2-1)-1/2lnabs(x+sqrt(x^2-1))+C

Jan 22, 2017

x/2sqrt(x^2-1)-1/2ln|x+sqrt(x^2-1)|+C.

Explanation:

Let I=intsqrt(x^2-1)dx=int(sqrt(x^2-1))(1)dx

We will use the following Rule of Integration by Parts (IBP) :

IBP : intuvdx=uintvdx-int{(du)/dxintvdx)}dx

Taking u=sqrt(x^2-1) rArr (du)/dx=1/(2sqrt(x^2-1))d/dx(x^2-1), i.e.,

(du)/dx=x/sqrt(x^2-1)

v=1 rArr intvdx=x Therefore,

I=xsqrt(x^2-1)-int{(x/sqrt(x^2-1))(x)}dx

=xsqrt(x^2-1)-intx^2/sqrt(x^2-1)dx

=xsqrt(x^2-1)-int{(x^2-1)+1}/sqrt(x^2-1)dx

=xsqrt(x^2-1)-int{(x^2-1)/sqrt(x^2-1)+1/sqrt(x^2-1)}dx

=xsqrt(x^2-1)-intsqrt(x^2-1)dx-int1/sqrt(x^2-1)dx, i.e.,

I=xsqrt(x^2-1)-I-ln|x+sqrt(x^2-1)|

rArr I+I=2I=xsqrt(x^2-1)-ln|x+sqrt(x^2-1)|," and, therefore,"

I=x/2sqrt(x^2-1)-1/2ln|x+sqrt(x^2-1)|+C.

Spread the Joy Maths.!