Question #d8ccb

1 Answer
Apr 17, 2017

(e^arctanx(x-1))/(2sqrt(1+x^2))+C

Explanation:

I=int(xe^arctanx)/((1+x^2)sqrt(1+x^2))dx

Let t=arctanx. This implies that dt=1/(1+x^2)dx and that x=tant.

I=int(tant(e^t))/sqrt(1+tan^2t)dt

Recall that 1+tan^2t=sec^2t:

I=inte^t tant/sectdt=inte^tsintdt

This is a tricky integral which is solved with two iterations of integration by parts. Start with:

{(u=e^t,=>,du=e^tdt),(dv=sintdt,=>,v=-cost):}

I=-e^tcost+inte^tcostdt

Now let:

{(u=e^t,=>,du=e^tdt),(dv=costdt,=>,v=sint):}

So:

I=-e^tcost+e^tsint-inte^tsintdt

The original integral I=inte^tsintdt has reappeared so we can add it to both sides of the equation then isolate I:

2I=e^tsint-e^tcost

I=1/2e^t(sint-cost)

Substituting back in with t=arctanx:

I=1/2e^arctanx(sin(arctanx)-cos(arctanx))

Note that the angle arctanx occurs in a right triangle where the side opposite the angle is x and the side adjacent to the angle is 1. Through the Pythagorean Theorem, its hypotenuse is sqrt(1+x^2).

Then, sin(arctanx)=x/sqrt(1+x^2) and cos(arctanx)=1/sqrt(1+x^2).

I=1/2e^arctanx(x/sqrt(1+x^2)-1/sqrt(1+x^2))

I=(e^arctanx(x-1))/(2sqrt(1+x^2))+C