Question #d8ccb
1 Answer
Explanation:
I=int(xe^arctanx)/((1+x^2)sqrt(1+x^2))dx
Let
I=int(tant(e^t))/sqrt(1+tan^2t)dt
Recall that
I=inte^t tant/sectdt=inte^tsintdt
This is a tricky integral which is solved with two iterations of integration by parts. Start with:
{(u=e^t,=>,du=e^tdt),(dv=sintdt,=>,v=-cost):}
I=-e^tcost+inte^tcostdt
Now let:
{(u=e^t,=>,du=e^tdt),(dv=costdt,=>,v=sint):}
So:
I=-e^tcost+e^tsint-inte^tsintdt
The original integral
2I=e^tsint-e^tcost
I=1/2e^t(sint-cost)
Substituting back in with
I=1/2e^arctanx(sin(arctanx)-cos(arctanx))
Note that the angle
Then,
I=1/2e^arctanx(x/sqrt(1+x^2)-1/sqrt(1+x^2))
I=(e^arctanx(x-1))/(2sqrt(1+x^2))+C