What is the integral of cos2(2x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Andrea S. Jan 15, 2017 ∫cos2(2x)dx=x2+18sin(4x)+C Explanation: Use the identity: cos2θ=1+cos2θ2 so that: ∫cos2(2x)dx=∫1+cos(4x)2dx=12∫dx+18∫cos(4x)d(4x)=x2+18sin(4x)+C Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 111233 views around the world You can reuse this answer Creative Commons License