How do you integrate 1−tanx1+tanxdx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Roy E. Dec 5, 2016 Rewrite as sines and cosines. Explanation: 1−tanx1+tanx=1−sinxcosx1+sinxcosx=cosx−sinxcosx+sinx=cosxcos(π4)−sinxsin(π4)cosxcos(π4)+sinxsin(π4)=cot(x+π4) Note that sin(π4)=cos(π4)=1√2 Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 34277 views around the world You can reuse this answer Creative Commons License