Evaluate I=\int\sec^3(x)dxI=sec3(x)dx?

The problem suggests using integration by parts.
After splitting the integral into \int\sec^2(x)\sec(x)dxsec2(x)sec(x)dx, I tried u=\sec(x)u=sec(x) and dv=\sec^2(x)dxdv=sec2(x)dx...

But I am stuck on the resulting uv-\intvduuvvdu form (heredx) is the equation I got).

2 Answers
Apr 9, 2018

int sec^3x dx = (secxtanx)/2 + 1/2ln abs (secx+tanx)+Csec3xdx=secxtanx2+12ln|secx+tanx|+C

Explanation:

Note that:

d/dx tanx = sec^2xddxtanx=sec2x

d/dx secx = secx tanxddxsecx=secxtanx

so:

int sec^3x dx = int secx * sec^2x dx = int secx d(tanx)sec3xdx=secxsec2xdx=secxd(tanx)

so, integrating by parts:

int sec^3x dx = secxtanx - int tanx d(secx)sec3xdx=secxtanxtanxd(secx)

int sec^3x dx = secxtanx - int secx tan^2xdxsec3xdx=secxtanxsecxtan2xdx

Use now the trigonometric identity:

tan^2x = sec^2x -1tan2x=sec2x1

to have:

int sec^3x dx = secxtanx - int secx (sec^2x-1)dxsec3xdx=secxtanxsecx(sec2x1)dx

and using the linearity of the integral:

int sec^3x dx = secxtanx - int sec^3xdx + int secxdxsec3xdx=secxtanxsec3xdx+secxdx

The integral to solve now appears on both sides of the equation, then:

2int sec^3x dx = secxtanx + int secxdx2sec3xdx=secxtanx+secxdx

int sec^3x dx = (secxtanx)/2 + 1/2 int secxdxsec3xdx=secxtanx2+12secxdx

You can see here how to solve the resulting integral to have:

int sec^3x dx = (secxtanx)/2 + 1/2ln abs (secx+tanx)+Csec3xdx=secxtanx2+12ln|secx+tanx|+C

Apr 9, 2018

I=1/2tanxsecx+1/2ln|tanx+secx|+cI=12tanxsecx+12ln|tanx+secx|+c

Explanation:

Here,

I=intsec^3xdxI=sec3xdx

=intsecxsec^2xdx=secxsec2xdx

=intsqrt(1+tan^2x)sec^2xdx=1+tan2xsec2xdx

Let , tanx=u=>sec^2xdx=dutanx=usec2xdx=du

I=intsqrt(1+u^2)duI=1+u2du

=u/2sqrt(1+u^2)+1/2ln|u+sqrt(u^2+1)|+c=u21+u2+12lnu+u2+1+c,where, u=tanxu=tanx

=1/2tanxsecx+1/2ln|tanx+sqrt(1+tan^2x)|+c=12tanxsecx+12lntanx+1+tan2x+c

I=1/2tanxsecx+1/2ln|tanx+secx|+cI=12tanxsecx+12ln|tanx+secx|+c