What is int xsin(x/2-pi) ∫xsin(x2−π)?
1 Answer
Explanation:
First, we can simplify
sin(A-B)=sinAcosB-cosAsinBsin(A−B)=sinAcosB−cosAsinB
Thus,
sin(x/2-pi)=sin(x/2)cos(pi)-cos(x/2)sin(pi)sin(x2−π)=sin(x2)cos(π)−cos(x2)sin(π)
=sin(x/2)(-1)-cos(x/2)(0)=sin(x2)(−1)−cos(x2)(0)
=-sin(x/2)=−sin(x2)
Thus the integral is slightly simplified to become
=-intxsin(x/2)dx=−∫xsin(x2)dx
First, set
=-2intxsin(x/2)(1/2)dx=−2∫xsin(x2)(12)dx
Substitute in
=-2int2tsin(t)dt=-4inttsin(t)dt=−2∫2tsin(t)dt=−4∫tsin(t)dt
Here, use integration by parts, which takes the form
intudv=uv-intvdu∫udv=uv−∫vdu
For
Hence,
inttsin(t)dt=t(-cos(t))-int(-cos(t))dt∫tsin(t)dt=t(−cos(t))−∫(−cos(t))dt
=-tcos(t)+sin(t)+C=−tcos(t)+sin(t)+C
Multiply these both by
-4inttsin(t)dt=4tcos(t)-4sin(t)+C−4∫tsin(t)dt=4tcos(t)−4sin(t)+C
Now, recall that
intxsin(x/2-pi)dx=4(x/2)cos(x/2)-4sin(x/2)+C∫xsin(x2−π)dx=4(x2)cos(x2)−4sin(x2)+C
=2xcos(x/2)-4sin(x/2)+C=2xcos(x2)−4sin(x2)+C