What is int xsin(x/2-pi) xsin(x2π)?

1 Answer
Apr 20, 2016

2xcos(x/2)-4sin(x/2)+C2xcos(x2)4sin(x2)+C

Explanation:

First, we can simplify sin(x/2-pi)sin(x2π) using the sine angle subtraction formula:

sin(A-B)=sinAcosB-cosAsinBsin(AB)=sinAcosBcosAsinB

Thus,

sin(x/2-pi)=sin(x/2)cos(pi)-cos(x/2)sin(pi)sin(x2π)=sin(x2)cos(π)cos(x2)sin(π)

=sin(x/2)(-1)-cos(x/2)(0)=sin(x2)(1)cos(x2)(0)

=-sin(x/2)=sin(x2)

Thus the integral is slightly simplified to become

=-intxsin(x/2)dx=xsin(x2)dx

First, set t=x/2t=x2. This implies that dt=1/2dxdt=12dx and x=2tx=2t. We will want to multiply the interior of the integral by 1/212 so that we have 1/2dx=t12dx=t and balance this by multiplying the exterior by 22.

=-2intxsin(x/2)(1/2)dx=2xsin(x2)(12)dx

Substitute in x=2tx=2t, x/2=tx2=t, and 1/2dx=dt12dx=dt.

=-2int2tsin(t)dt=-4inttsin(t)dt=22tsin(t)dt=4tsin(t)dt

Here, use integration by parts, which takes the form

intudv=uv-intvduudv=uvvdu

For inttsin(t)dttsin(t)dt, set u=tu=t and dv=sin(t)dtdv=sin(t)dt, which imply that du=dtdu=dt and v=-cos(t)v=cos(t).

Hence,

inttsin(t)dt=t(-cos(t))-int(-cos(t))dttsin(t)dt=t(cos(t))(cos(t))dt

=-tcos(t)+sin(t)+C=tcos(t)+sin(t)+C

Multiply these both by -44 to see that:

-4inttsin(t)dt=4tcos(t)-4sin(t)+C4tsin(t)dt=4tcos(t)4sin(t)+C

Now, recall that t=x/2t=x2:

intxsin(x/2-pi)dx=4(x/2)cos(x/2)-4sin(x/2)+Cxsin(x2π)dx=4(x2)cos(x2)4sin(x2)+C

=2xcos(x/2)-4sin(x/2)+C=2xcos(x2)4sin(x2)+C