What is the integral of int (sin(2x)*sin(5x)dx)?

1 Answer
Feb 27, 2017

The answer is ==1/6sin3x-1/14sin7x+C

Explanation:

We use,

cos(a-b)=cosacosb+sinasinb

cos(a+b)=cosacosb-sina sinb

cos(a-b)-cos(a+b)=2sinasinb

Here we have,

a=5x

b=2x

2sin5xsin2x=cos3x-cos7x

Therefore,

intsin5xsin2xdx=1/2intcos3dx-1/2intcos7xdx

=1/2(sin3x)/3-1/2(sin7x)/7+C

=1/6sin3x-1/14sin7x+C