What is the integral of int (sin(2x)*sin(5x)dx)? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Narad T. Feb 27, 2017 The answer is ==1/6sin3x-1/14sin7x+C Explanation: We use, cos(a-b)=cosacosb+sinasinb cos(a+b)=cosacosb-sina sinb cos(a-b)-cos(a+b)=2sinasinb Here we have, a=5x b=2x 2sin5xsin2x=cos3x-cos7x Therefore, intsin5xsin2xdx=1/2intcos3dx-1/2intcos7xdx =1/2(sin3x)/3-1/2(sin7x)/7+C =1/6sin3x-1/14sin7x+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 14698 views around the world You can reuse this answer Creative Commons License