How do you integrate tan5(x)?

1 Answer
Oct 31, 2017

Recursively use the reduction formula:

tann(x)dx=1n1tann1(x)tann2(x)dx

Until n=1, then we know this one.

Explanation:

Starting with n=5:

tan5(x)dx=14tan4(x)tan3(x)dx

Now n=3:

tan5(x)dx=14tan4(x)12tan2(x)+tan(x)dx

We know the last integral:

tan5(x)dx=14tan4(x)12tan2(x)+ln|sec(x)|+C