int_(1/a)^a(tan^-1x)/xdx=?

2 Answers
Jul 20, 2016

int (tan^{-1}(x)dx)/x = i/2(PolyLog(2,-i x)-PolyLog(2,ix))

Explanation:

We know that the arctan(x) series representation is given by

tan^{-1}(x) = sum_{k=0}^oo(-1)^k (x^{2k+1})/(2k+1) for abs x < 1

http://math.stackexchange.com/questions/29649/why-is-arctanx-x-x3-3x5-5-x7-7-dots

then

tan^{-1}(x)/x = sum_{k=0}^oo(-1)^k (x^{2k})/(2k+1) and

int (tan^{-1}(x)dx)/x =sum_{k=0}^oo(-1)^k (x^{2k+1})/(2k+1)^2

We know also that

PolyLog(2,x) = sum_{k=1}^oo x^k/k^2
https://en.wikipedia.org/wiki/Polylogarithm

so finally

int (tan^{-1}(x)dx)/x = i/2(PolyLog(2,-i x)-PolyLog(2,ix))

Jul 21, 2016

Let
z=lnx=>x=e^z
x=a->z=lna and x=1/a->z=-lna

and dz==(dx)/x

I=int_(1/a)^a(tan^-1x)/xdx

=int_(-lna)^(lna)tan^-1(e^z)dz

=int_(-lna)^0tan^-1e^zdz+int_0^(lna)tan^-1e^zdz

=int_0^(lna)tan^-1e^-zdz+int_0^(lna)tan^-1e^zdz

=int_0^(lna)(cot^-1e^z+tan^-1e^z)dz

=int_0^(lna)(pi/2)dz

=pi/2lna