How do you find the integral of 1/[cosx*(1-sinx)^2]?

1 Answer
Apr 18, 2015

Start by multiplying both numerator and denominator by cos(x)

intcos(x)/(cos^2(x)*(1-sin(x))^2)dx

Let's t = sin(x)

dt = cos(x) dx

Remember pythagore cos^2(x)=1-sin^2(x)

Now we have

=>int1/((1-t^2)*(1-t)^2)dt

Factor the denominator :

=>int-1/((t-1)^3*(t+1))dt

Now partial fraction !

=>-1/((t-1)^3*(t+1)) =

-theta/(t-1)-beta/(t-1)^2-alpha/(t-1)^3-nu/(t+1)

Do some boring math :

Multiply both side by -(t-1)^3*(t+1) and simplify

You will find :

=>1=(theta+nu)t^3+(-theta+beta-3nu)t^2+(-theta+alpha+3nu)t+theta-beta+alpha-nu

4 systems 4 unknown

Result is :

theta = 1/8
beta = -1/4
alpha = 1/2
nu = -1/8

=>int1/((1-t^2)*(1-t)^2)dt =

=>-1/8int1/(t-1)+1/4int1/(t-1)^2-1/2int1/(t-1)^3+1/8int1/(t+1)

=>-1/8[ln(|t-1|)]-1/4[1/(t-1)]+1/4[1/(t-1)^2]+1/8[ln(|t+1|)]

Substitute back for t = sin(x)

=>-1/8[ln(|sin(x)-1|)]-1/4[1/(sin(x)-1)]+1/4[1/(sin(x)-1)^2]+1/8[ln(|sin(x)+1|)]