How do you find the integral of sin(2πt)dt?
1 Answer
Mar 17, 2016
Explanation:
We have:
∫sin(2πt)dt
Substitute:
u=2πt ⇒ du=2πdt
In order to have
=12π∫sin(2πt)⋅2πdt
Substituting, we obtain:
=12π∫sin(u)du
This is a common integral:
=−12πcos(u)+C
Back substituting for
=−cos(2πt)2π+C