int_0^(tan^(-1) x)1/(1+tan^2 t) dt
By Trigonometric Identities,
=int_0^(tan^(-1) x)1/sec^2 t dt
=int_0^(tan^(-1) x)cos^2 t dt
=int_0^(tan^(-1)x)1/2(1+cos 2t)dt
By integrating and sin 2t=2sin t cos t
=1/2 [1+(sin 2t)/2]_0^(tan^(-1) x)
=1/2[t+sin t cos t]_0^(tan^(-1) x)
=1/2(tan^(-1) x +sin(tan^(-1) x) cdot cos(tan^(-1) x))
=1/2(tan^(-1) x+ x/sqrt(1+x^2) cdot 1/sqrt(1+x^2))
=1/2(tan^(-1) x+x/(1+x^2))
I hope that this was clear.