How do you find the integral of sin^2(3x)dxsin2(3x)dx?

1 Answer
Jul 12, 2016

=1/2x - 1/12sin6x + C=12x112sin6x+C

Explanation:

int \ sin^2 (3x) \ dx

small book keeping gesture is to make the sub u = 3x, du = 3 dx

1/3int \ sin^2 (u) \ du

then we use the cosine double angle formulae

cos 2A = 1 - 2 sin^2 A

so sin^2 A = (1 - cos 2A)/2

=1/6int \ 1 - cos 2u \ du

=1/6( u - 1/2sin 2u ) + C

=1/6( 3x - 1/2sin( 2*3x) ) + C

=1/2x - 1/12sin6x + C