How do you find the integral of int sin^3(x)dx∫sin3(x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Bill K. Oct 6, 2015 int sin^{3}(x)\ dx=1/3 cos^{3}(x)-cos(x)+C Explanation: Use the identity sin^{2}(x)=1-cos^{2}(x) and then let u=cos(x) so that du = -sin(x)\ dx and int sin^{3}(x)\ dx=int(1-cos^{2}(x))sin(x)\ dx=int (u^2-1)\ du =u^3/3-u+C=1/3 cos^{3}(x)-cos(x)+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1297 views around the world You can reuse this answer Creative Commons License