Integration By Parts: int udv = uv - int vdu∫udv=uv−∫vdu
u = arctanx => du = 1/(x^2+1) dxu=arctanx⇒du=1x2+1dx
dv = dx => v=xdv=dx⇒v=x
I = int arctanx dx = xarctanx - int x* 1/(x^2+1)dxI=∫arctanxdx=xarctanx−∫x⋅1x2+1dx
I = xarctanx - int (xdx)/(x^2+1) = xarctanx - int (1/2d(x^2+1))/(x^2+1)I=xarctanx−∫xdxx2+1=xarctanx−∫12d(x2+1)x2+1
I = xarctanx - 1/2 int (d(x^2+1))/(x^2+1)I=xarctanx−12∫d(x2+1)x2+1
I = xarctanx - 1/2 ln (x^2+1) + CI=xarctanx−12ln(x2+1)+C