How do you find the antiderivative of Cos(2x)Sin(x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Monzur R. Aug 30, 2017 intcos2xsinxdx = cosx-2/3cos^3x + "constant" Explanation: cos2x -= 2cos^2x-1 therefore intcos2xsinxdx = int(2cos^2x -1)sinxdx = 2intcos^2xsinxdx -intsinxdx Let u = cosx and du = -sinxdx Then cosx +2intcos^2xsinxdx = cosx-2intu^2du = cosx-2/3u^3=cosx-2/3cos^3x +"constant" Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1595 views around the world You can reuse this answer Creative Commons License