How do you find the antiderivative of Cos(2x)Sin(x)dx?

1 Answer
Aug 30, 2017

intcos2xsinxdx = cosx-2/3cos^3x + "constant"

Explanation:

cos2x -= 2cos^2x-1

therefore intcos2xsinxdx = int(2cos^2x -1)sinxdx = 2intcos^2xsinxdx -intsinxdx

Let u = cosx and du = -sinxdx

Then cosx +2intcos^2xsinxdx = cosx-2intu^2du = cosx-2/3u^3=cosx-2/3cos^3x +"constant"