We need
costheta=(e^(itheta)+e^(-itheta))/2
i^2=-1
Therefore,
intcos(7x)^3dx=intcos(343x^3)dx
=int((e^(i343x^3)+e^(-i343x^3))/2)dx
=1/2inte^(i343x^3)dx+1/2inte^(-i343x^3)dx
Let u=-7i^(1/6)x, =>, du=-7i^(1/6)dx
1/2inte^(i343x^3)dx=-1/(14i^(1/6))inte^(-u^3)du
=-1/(42i^(1/6))Gamma (1/3 "," u^3)
=-1/(42i^(1/6))Gamma(1/3","-343ix^3)
And
1/2inte^(-i343x^3)dx=-1/(14i^(1/6))inte^(u^3)du
=-1/(42i^(1/6))Gamma(1/3","-u^3)
=-1/(42i^(1/6))Gamma(1/3","343ix^3)
Finally,
intcos(7x)^3dx=-1/(42i^(1/6))Gamma(1/3","-343ix^3)-1/(42i^(1/6))Gamma(1/3","343ix^3)+C