How do you integrate int sqrttanxsec^2xdxtanxsec2xdx?

1 Answer
Nov 29, 2016

Let u = tan(x)u=tan(x), then du = sec^2(x)dxdu=sec2(x)dx. Please see the explanation.

Explanation:

Let u = tan(x)u=tan(x), then du = sec^2(x)dxdu=sec2(x)dx

intsqrt(tan(t))sec^2dx = int(u^(1/2))dutan(t)sec2dx=(u12)du

Integrate:

intsqrt(tan(t))sec^2dx = 2/3u^(3/2) + Ctan(t)sec2dx=23u32+C

Reverse the substitution:

intsqrt(tan(t))sec^2dx = 2/3(tan(x))^(3/2) + Ctan(t)sec2dx=23(tan(x))32+C