How do you find the antiderivative of #cos(3x)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer sjc Feb 1, 2017 #" "intcos3xdx=1/3sin3x+C# Explanation: we want#" "intcos3xdx# we know #d/(dx)(sin3x)=3cos3x" "#using the chain rule. so#" "intcos3xdx=1/3sin3x+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 13622 views around the world You can reuse this answer Creative Commons License