How do you integrate sec^3(x)sec3(x)?

1 Answer

color(red)(int sec^3 x*dx=1/2*sec x*tan x+1/2*ln(sec x+tan x)+C)sec3xdx=12secxtanx+12ln(secx+tanx)+C

Explanation:

This is done using Integration by Parts

int u*dv=uv-int v*duudv=uvvdu

Let u=sec xu=secx
Let dv=sec^2 x*dxdv=sec2xdx
Let v=tan xv=tanx
Let du=sec x*tan x* dxdu=secxtanxdx

Use the formula

int u*dv=uv-int v*duudv=uvvdu
int sec x*sec^2 x*dx=sec x*tan x-int tan x(sec x*tan x* dx)secxsec2xdx=secxtanxtanx(secxtanxdx)

int sec^3 x*dx=sec x*tan x-int tan^2 x*sec x* dxsec3xdx=secxtanxtan2xsecxdx

Recall tan^2 x+1=sec^2 xtan2x+1=sec2x
and tan^2 x=sec^2 x-1tan2x=sec2x1

int sec^3 x*dx=sec x*tan x-int (sec^2 x-1)sec x* dxsec3xdx=secxtanx(sec2x1)secxdx

int sec^3 x*dx=sec x*tan x-int (sec^3 x-sec x)* dxsec3xdx=secxtanx(sec3xsecx)dx

int sec^3 x*dx=sec x*tan x-int sec^3 x*dx+int sec x* dxsec3xdx=secxtanxsec3xdx+secxdx

Transpose the right int sec^3 x*dxsec3xdx to the left side of the equation

int sec^3 x*dx+int sec^3 x*dx=sec x*tan x+int sec dxsec3xdx+sec3xdx=secxtanx+secdx

2*int sec^3 x*dx=sec x*tan x+ln(sec x+tan x)2sec3xdx=secxtanx+ln(secx+tanx)

Divide both sides by 22

color(red)(int sec^3 x*dx=1/2*sec x*tan x+1/2*ln(sec x+tan x)+C)sec3xdx=12secxtanx+12ln(secx+tanx)+C

God bless....I hope the explanation is useful.