What is the integral of sin^3xsin3x?

2 Answers
Apr 2, 2018

1/12(cos3x-9cosx)+C112(cos3x9cosx)+C.

Explanation:

We know that, sin3x=3sinx-4sin^3x rArr sin^3x=1/4(3sinx-sin3x)sin3x=3sinx4sin3xsin3x=14(3sinxsin3x).

:. intsin^3xdx,

=1/4int(3sinx-sin3x)dx,

=1/4{3(-cosx)-(-cos3x)1/3}.

rArr intsin^3xdx=1/12(cos3x-9cosx)+C.

Apr 2, 2018

int sin^3 xcolor(white)(.)dx = -cos x + 1/3 cos^3 x + C

Explanation:

As is often the case with trigonometric integrals, there is more than one way to tackle this...

Note that:

sin^2 x = 1-cos^2 x

So:

int sin^3 x dx = int sin x(1 - cos^2 x)dx

color(white)(int sin^3 x dx) = int sin x - sin x cos^2 x color(white)(.)dx

color(white)(int sin^3 x dx) = -cos x + 1/3 cos^3 x + C

Note that this is equivalent to the other answer, as you may care to verify yourself. [Hint: Use cos 3 x = 4 cos^3x - 3 cos x]