How do you integrate hyperbolic trig functions?

1 Answer
Mar 22, 2015

The easiest way to integrate (or differentiate) the hyperbolic functions is to use their definitions:

sinh(x)=(e^x-e^(-x))/2
cosh(x)=(e^x+e^(-x))/2
tanh(x)=sinh(x)/cosh(x)=(e^x-e^(-x))/(e^x+e^(-x))
coth(x)=cosh(x)/sinh(x)=(e^x+e^(-x))/(e^x-e^(-x))

From here, it should be reasonably straightforward to show that

int sinh(x)dx = cosh(x) + C
int cosh(x)dx = sinh(x) + C
int tanh(x)dx = ln(cosh((x)) + C
int coth(x)dx = ln(sinh(x))+ C

where C is the constant of integration. I will show the first two here:

int sinh(x)dx = int (e^x-e^-x)/2 = int e^x/2-e^(-x)/2dx
=e^x/2-(-e^-x)/2 + C (where C is the constant of integration)
=e^x/2+e^(-x)/2 + C
=cosh(x)+C.

Similarly,
int cosh(x)dx = int e^x/2+e^(-x)/2dx
=e^x/2+(-e^-x)/2 + C
=e^x/2-e^-x/2 + C
=sinh(x) + C.