What is int sin^4xdx ? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Konstantinos Michailidis Aug 10, 2016 We know that sin^2x=1/2(1-cos2x) and cos^2 2x=1/2*(1+cos4x) Hence int sin^4xdx=int (1/2(1-cos2x))^2dx= 1/4*int(1-2cos2x+cos^2 2x)dx= 1/4*int1dx-2*1/4intcos2xdx+1/4intcos^2 2xdx= 1/4*x-1/4*sin2x+1/4*int((1+cos4x)/2)dx= 1/4*x-1/4*sin2x+1/8*x+1/32*sin(4x)+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 2465 views around the world You can reuse this answer Creative Commons License