How do you integrate #int csc^2(x/2) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer sjc Dec 14, 2016 #" "intcsc^2(x/2)dx=-2cot(x/2)+C# Explanation: #d/(dx)(cotx)=-csc^2x# so#" "d/(dx)(cot(x/2))=-1/2csc^2x# inspecting #" "intcsc^2(x/2)dx# we have to adjust for the #" "-1/2# #" "intcsc^2(x/2)dx=-2cot(x/2)+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 6478 views around the world You can reuse this answer Creative Commons License