How do you find the antiderivative of ∫cos3xsin2xdx?
1 Answer
Jan 18, 2017
Explanation:
Factor:
∫cosx(cos2x)sin2xdx
Rewrite using the pythagorean identity
∫cosx(1−sin2x)sin2xdx
Expand:
∫cosx(sin2x−sin4x)dx
Let
∫cosx(u2−u4)⋅ducosx
∫u2−u4du
This can be integrated as
13u3−15u5+C
Reverse the substitution:
13sin3x−15sin5x+C
Hopefully this helps!