How do you find the antiderivative of cos3xsin2xdx?

1 Answer
Jan 18, 2017

13sin3x15sin5x+C

Explanation:

Factor:

cosx(cos2x)sin2xdx

Rewrite using the pythagorean identity sin2θ+cos2θ=1:

cosx(1sin2x)sin2xdx

Expand:

cosx(sin2xsin4x)dx

Let u=sinx. Then du=cosxdx=dx=ducosx.

cosx(u2u4)ducosx

u2u4du

This can be integrated as xndx=xn+1n+1+C, where n1

13u315u5+C

Reverse the substitution:

13sin3x15sin5x+C

Hopefully this helps!