How do you integrate tan^3xtan3x?

1 Answer
Feb 12, 2017

1/2tan^2x+ln|secx|+C12tan2x+ln|secx|+C

by the use of trig identities alternative equivalent solns can be found

Explanation:

inttan^3xdxtan3xdx

now" "1+tan^2x=sec^2x=tan^2x=sec^2x-1 1+tan2x=sec2x=tan2x=sec2x1

inttan^3xdx=inttan^2xtanxdxtan3xdx=tan2xtanxdx

=int(sec^2x-1)tanxdx=(sec2x1)tanxdx

=int(sec^2xtanx)dx-inttanxdx=(sec2xtanx)dxtanxdx

now

d/(dx)(tan^2x)=2tanxsec^2xddx(tan2x)=2tanxsec2x

:.=int(sec^2xtanx)dx=1/2tan^2x

inttanxdx=intsinx/cosxdx=-ln|cosx|=ln|secx|

so the complete soln

inttan^3xdx

=1/2tan^2x+ln|secx|+C