Find the cubic equation whose roots are the cubes of the roots of #x^3+ax^2+bx+c=0#,#a,b,cinRR#?
Find the cubic equation whose roots are the cubes of the roots of
#x^3+ax^2+bx+c=0# ,#a,b,cinRR#
Find the cubic equation whose roots are the cubes of the roots of
1 Answer
Explanation:
Suppose the roots of the original cubic are
Then:
#x^3+ax^2+bx+c = (x-alpha)(x-beta)(x-gamma)#
#color(white)(x^3+ax^2+bx+c) = x^3-(alpha+beta+gamma)x^2+(alphabeta+betagamma+gammaalpha)x-alphabetagamma#
So we have:
#{ (alpha+beta+gamma = -a), (alphabeta+betagamma+gammaalpha = b), (alphabetagamma = -c) :}#
The cubic we are looking for is:
#(x-alpha^3)(x-beta^3)(x-gamma^3)#
#= x^3-(alpha^3+beta^3+gamma^3)x^2+(alpha^3beta^3+beta^3gamma^3+gamma^3alpha^3)x-alpha^3beta^3gamma^3#
So the problem essentially boils down to expressing each of the symmetric polynomials in
For example:
#(alpha+beta+gamma)^3#
#=alpha^3+beta^3+gamma^3+3(alpha^2beta+beta^2gamma+gamma^2alpha+alphabeta^2+betagamma^2+gammaalpha^2)+6alphabetagamma#
#(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)#
#=alpha^2beta+beta^2gamma+gamma^2alpha+alphabeta^2+betagamma^2+gammaalpha^2+3alphabetagamma#
So:
#alpha^3+beta^3+gamma^3#
#=(alpha+beta+gamma)^3-3(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)+3alphabetagamma#
#=-a^3+3ab-3c#
We also find:
#(alphabeta+betagamma+gammaalpha)^3#
#= alpha^3beta^3+beta^3gamma^3+gamma^3alpha^3+3(alpha^3beta^2gamma+beta^3gamma^2alpha+gamma^3alpha^2beta+alpha^3betagamma^2+beta^3gammaalpha^2+gamma^3alphabeta^2)+6alpha^2beta^2gamma^2#
#(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)alphabetagamma#
#=alpha^3beta^2gamma+beta^3gamma^2alpha+gamma^3alpha^2beta+alpha^3betagamma^2+beta^3gammaalpha^2+gamma^3alphabeta^2+3alpha^2beta^2gamma^2#
So:
#alpha^3beta^3+beta^3gamma^3+gamma^3alpha^3#
#=(alphabeta+betagamma+gammaalpha)^3-3(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)alphabetagamma+3(alphabetagamma)^2#
#=b^3-3abc+3c^2#
Finally:
#alpha^3beta^3gamma^3 = (alphabetagamma)^3 = -c^3#
Hence the required cubic equation is:
#x^3+(a^3-3ab+3c)x^2+(b^3-3abc+3c^2)x+c^3 = 0#
Footnote
If you would like to see a more advanced application of symmetric polynomials, you may like to take a look at this one: https://socratic.org/s/aCWXbG2b